Extremal functions for starlike functions and convex functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Starlike and Convex Properties for Hypergeometric Functions

The purpose of the present paper is to give some characterizations for a Gaussian hypergeometric function to be in various subclasses of starlike and convex functions. We also consider an integral operator related to the hypergeometric function.

متن کامل

Some properties and results for certain subclasses of starlike and convex functions

In the present paper, we introduce and investigate some properties of two subclasses $ Lambda_{n}( lambda , beta ) $ and $ Lambda_{n}^{+}( lambda , beta ) $;  meromorphic and starlike  functions of order $ beta $. In particular, several inclusion relations, coefficient estimates, distortion theorems and covering theorems are proven here for each of these function classes.

متن کامل

Classes of uniformly starlike and convex functions

Some classes of uniformly starlike and convex functions are introduced. The geometrical properties of these classes and their behavior under certain integral operators are investigated. 1. Introduction. Let A denote the class of functions of the form f (z) = z+ ∞ n=2 a n z

متن کامل

Parabolic Starlike and Uniformly Convex Functions

The main object of this paper is to derive the sufficient conditions for the function z {pψq (z)} to be in the class of uniformly starlike and uniformly convex function associated with the parabolic region Re {ω} > |ω − 1| . Further, the hadamard product of the function which are analytic in the open unit disk with negative coefficients are also investigated. Finally, similar results using an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Trends in Mathematical Science

سال: 2017

ISSN: 2147-5520

DOI: 10.20852/ntmsci.2017.169